Organization and analysis of information for biotherapeutics research

Mark R. Hansen, Hugo O. Villar

Altoris, Inc., La Jolla, CA

Eric Feyfant

Global Biotherapeutic Technologies Dept., Pfizer Inc., Cambridge, MA

Analytics for Biologics

- Current state of the art
 - 3D Structure to activity
 - Possible when small datasets are available
- Lack of tools to correlate sequence to activity
 - Macros in MS Excel
- Narrow applicability
 - Peptides, Antibodies, Protein Engineering,
 Polynucleotides, need to be served

SARvision | Biologics

- Solution for research informatics
 - SAR analysis, not production or inventory
 - Primary Sequence to Activity
 - For 3D and bioinformatics solutions exist
- Three broad development considerations
 - Data handling
 - Data organization
 - Primary structure analytics
- Integration with other applications possible

Spreadsheet format

Basic Visualization

- Sorting
 - Sequence or alphanumerical data
- Heat maps
- Properties: hydrophobicity secondary structure

Basic Calculations

- Molecular weight isoelectric point, etc.
- Boolean or arithmetic operations on columns

SARvision|Biologics

le View Data To	ools																					
II Sequence	Data	(+)																				
lotifs: 1): GLP1-7137		1		1	1																	
. 52. 2 7237		ID	IC50	EC50	MW	pl	1 H	2 A	3 E	4 G	5 T	6 F	7 T	8 S	9 D	10 V	11 S	12 S	13 Y	14 L	15 E	16 G
l Sequence	1	16	0.15	0.22	3167.43	4.54	П		D	•		F		3		· ·			1			•
tifs: 1 GLP1-7137	2	Exendin-4	0.22	0.30	4169.55	4.39		G	-									K	Q	М	-	F
JLP1-/13/	3	15	0.09	0.40	3323.62	5.36		•	D							-			•	•	-	÷
	4	18	0.24	0.50	3165.50	5.31			L													
	5	1	0.18	0.50	3181.45	4.54																
	6	19	0.09	0.70	3339.73	7.12			М									•	•			
	7	20	0.19	0.80	3183.54	5.31			М										•			
	8	17	0.40	0.80	3321.69	7.12		•	L		•		•		•		•	•	•		•	
	9	7	0.15	0.80	3337.64	5.41			•		•		•				•	•	•		•	
	10	2	0.32	0.90	3347.67	4.60	F		•		•		•	•	•			•	•	•	•	•
	11	GLP1-7137	0.31	0.90	3337.64	5.41					•	•	•	•	•		•	•	•	•	•	•
	12	8	0.33	1.40	3181.45	4.54					•	•	•	•	•	•	•	•	•	•	•	
	13	11	0.47	2.50	3365.69	5.41	•	V	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	14	21	1.50	3.50	3295.61	7.12	•	•	S	•	•	•	•	•	•	•	•	•	•	•	•	•
	15	12	1.40	3.50	3209.50	4.54	•	V	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	16	6	2.70	5.40	3363.67	4.60	Υ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	17	22	4.90	6.40	3139.42	5.31	•	•	S	•	•	•	•	•	•	•	•	•	•	•	•	•
	18	3	1.60	7.00	3191.48	4.14	F	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	19	9	2.90	15.00	3353.64	5.41	•	S	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	20	10	3.80	17.00	3197.45	4.54	•	S	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	21	28	19.50	98.00	3181.45	4.54	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	22	24	19.50	98.00	3151.47	5.31	•	•	V	•	•	•	•	•	•	•	•	•	•	•	•	•
	23	27	9.30	103.00	3337.64	5.41	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	24	23	9.30	103.00	3307.66	7.12	•	•	V	•	•	•	•	•	•	•	•	•	•	•	•	•
	25	25	216.00	126.00	3336.70	9.05	•	•	K	•	•	•	•	•	•	•	•	•	•	•	•	•
	26	4	3.30	127.00	3386.71	4.60	W	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	27	5	4.60	152.00	3230.52	4.14	W	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠
	28	13	5.70	180.00	3379.72	5.41	•	L	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	29	14	16.80	218.00	3223.53	4.54	•	L	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	30	26	231 00	354 00	3180.51	7 12			К													Ì

Color by Property

ata	(+)																												
																						Ful	l Seque	ence					
	EC50		pl	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
				Н	Α	Е	G	Т	F	Т	S	D	V	S	S	Y	L	Е	G	Q	Α	Α	K	Е	F	1	Α	W	L
1	0.90		5.41	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
2	0.50		4.54	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
3	0.90		4.60	F	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• AI	anine			٠	•	•	•	•
4	7.00		4.14	F	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				•	•	•	•	•
5	127.00		4.60	W	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• (Ο,	N	\prec	•	•	•	•	•
6	152.00		4.14	W	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	_/		•	•	•	•	•
7	5.40		4.60	Υ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• ~	/	/		•	•	•	•	•
8	0.80		5.41	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				•	•	•	•	•
9	1.40		4.54	•				•	•	•	•		•	•	•		•		•		•	•				•	•	•	•
Dat	(+)																												
																										Fu	ll Sequ	ence	
		C50	EC50			pl		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
								Н	Α	Е	G	Т	F	Т	S	D	V	S	S	Υ	L	E	G	Q	Α	Α	K	E	F
	1	0.31	0.90			5.41		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	2	0.18	0.50			4.54		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	3	0.32	0.90			4.60		F	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	4	1.60	7.00			4.14		F	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
;	5	3.30	127.00)		4.60		W	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	
	6	4.60	152.00)		4.14		W	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	7	2.70	5.40			4.60		Υ	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
1	3	0.15	0.80			5.41		•		•		•			•		•	•		•	•	•		•		•		•	
	9	0.33	1.40			4.54		•		•		•			•					•	•	•		•		•		•	
1	0	2.90	15.00			5.41		•	S	•		•					•							•				•	
1	1	3.80	17.00			4.54		•	S	•	•	•			•		•			•	•	•		•		•		•	
1	2).47	2.50			5.41		•	V	•							•				•							•	
1		1.40	3.50			4.54			V						•		•		•										
1	4	5.70	180.00)		5.41			L						•				•										
1		6.80	218.00			4.54			L																				
1		0.09	0.40			5.36				D																			
1 -		0.15	0.22			4.54				D																			

Data Handling Challenges

- Chemoinformatics tools inadequate
 - Mostly based on 2D
- Information can be dispersed
- Biopolymers are built in blocks
 - Extensive repertoire
 - e.g. unnatural amino acids, isomers, etc.
 - Chemically modified
 - cyclization, glycosylation, etc.

Data Handling

Long lists of monomeric units

Stereoisomers, chemical modifications, etc.

Combinatorial problem

Monomeric units times modifications

Process information from two files:

- Monomer Units: nucleotides, amino acids, etc.
- Chemical Modifications: operations on the monomers

Monomer Datafile

- Structural information
 - SMILES strings
- Color schemes
 - Clustal, Hydrophobicity, Secondary structure, etc.
- Synonyms
 - G== Gly == GLY == Glycine, etc.
- Monomer properties
 - MW, pKa, etc.
- Large collections of unnatural monomers

Modifier Datafile

- Name and synonyms for modifiers
 - stereochemistry, glycosylation, N-methylation, etc.
- Color Scheme
 - highlight modified residues
- Property Modification
 - i.e. deviation introduced by the modification (+MW)

Sequence characteristics

		IC50								ShortSe	eq								
SST1	SST2	SST3	SST4	SST5	15	16	17	18	19	20	21	22	23	24	25	26	27	28	28A
3311	3312	3313	3314	3313	Ala	Gly	Cys(1)	Lys	Asn	Phe	Phe	Trp	Lys	Thr	Phe	Thr	Ser	Cys(1)	-
10000.0	1.8	43.0	66.00	0.62	-	amp	•(1)	-	-	-	Tyr		•	-	-	-	Val	•(1)	Thr
197.0	1.9	52.0	1.00	43.00	-	-	•(1)	Phe	-	-	•	•	•	•	•	•	-	•(1)	
10000.0	2.1	4.4	10000.00	5.60	-	Phe	•(1)	-	-	-	•	•	•	-	-	-	Thr	•(1)	Thr
3.9	2.2	7.1	3.80	3.90	•	•	•(1)	•	•	•	•	•	•	•	•	•	•	•(1)	
3.2	2.3	3.5	2.50	2.40	•	•	•(1)	•	•	•	•	•	•	•	•	•	•	•(1)	-
112.0	5.0	11.0	1.40	9.50	-		•(1)	Asn	-	•	•	•	•	•	•	•	-	•(1)	-
10000.0	5.4	3.1	10000.00	0.70	-	Phe	•(1)	-	-	-	Tyr	•	•	-	-	-	Val	•(1)	Trp
5.3	15.0	39.0	0.60	13.00	-	•	•(1)	•	-	•	•	•	•	•	•	-	-	•(1)	-
10.3	15.5	8.2	0.51	4.80	-	-	•(1)	-	-	•	•	•	•	•	Tyr	-	-	•(1)	-
10.0	16.0	8.0	0.50	4.80	-	-	•(1)	•	-	•	•	•	•	•	Tyr	•	•	•(1)	-
117.0	26.0	36.0	1.80	20.30	-	-	•(1)	-	-	•	Tyr	•	•	•	•	-	-	•(1)	-
79.0	28.0	222.0	3.30	8.60	-	-	•(1)	-	-	•	•	•	•	•	•	•	•	•(1)	-
27.0	41.0	13.0	1.80	46.00	-	-	•(1)	-	-	•	•	•	•	•	•	-	-	•(1)	-
6.5	43.0	10.0	1.30	24.00	-	-	•(1)	-	-	•	•	•	•	•	Tyr	-	-	•(1)	-
27.0	54.0	22.0	1.30	63.00	-	-	•(1)	-	-	•	Tyr	•	•	•	•	-	-	•(1)	-
517.0	56.0	263.0	1.20	34.00	-	Tyr	•(1)	-	-	•	aph	٠	•	•	٠	-	-	•(1)	-
330.0	57.0	347.0	1.10	51.00	-	Tyr	•(1)	-	-	•	Ala	•	•	•	•	-	-	•(1)	-
450.0	71.0	271.0	0.88	30.00	-	-	(1)	1	-	•	aph	•	•	•	•	-	-	•(1)	-
348.0	81.0	171.0	10000.00	524.00	-	na	•(1)	-)	-	-	pal			-	-	-	Val	•(1)	nal
59.0	95.0	189.0	1.20	31.00	-	-	(1)	Asn	-	•	• 3	-pyridyl	alanine			-	-	•(1)	-
5.3	130.0	13.0	0.70	14.00	-	-	•(1)	-	-	•	•	\geq_N				-	-	•(1)	-
413.0	163.0	192.0	1570.00	382.00	-	nal	•(1)	-	-	-	pal	,	\searrow			-	Gly	•(1)	nal
327.0	170.0	247.0	1.10	240.00	-	-	•(1)	-	-	•	aph	<u>ک</u>		\		-	-	•(1)	-
13.0	179.0	57.0	1.60	19.00	-	Tyr	•(1)	-	-	•	•	()	0 /	/	\\\ \ \	-	-	•(1)	-
10000.0	183.0	897.0	0.98	199.00	-	-	•(1)	-	-	•	Ala		\	\i	/: ·	-	-	•(1)	-
1200.0	203.0	379.0	10000.00	1860.00	-	nal	•(1)	-	-	-	pal					-	Ala	•(1)	nal
309.0	213.0	273.0	267.00	190.00	-	-	•(1)	•	-	•	•	•	amp	•	•	•	•	•(1)	-
270.0	260.0	135.0	1.90	663.00	-	Tyr	•(1)	-	-	•	aph	•	•	•	•	-	-	•(1)	-
213.0	347.0	10000.0	1.20	10000.00	-	-	•(1)	-	-	•	aph	•	•	•	•	-	-	•(1)	-
10000.0	531.0	10000.0	229.00	10000.00	-	-	•(1)	-	-	-		1	•	•	•	-	-	•(1)	-
415.0	543.0	243.0	728.00	968.00	-	nal	•(1)	-	-	-	pal)	•	-	-	-	Leu	•(1)	nal
10000.0	598.0	10000.0	10000.00	10000.00	-	-	•(1)	-	-	•	•	•	•	•	-	-	-	•(1)	-
1000.0	622.0	624.0	2.00	692.00		Tyr	•(1)	-	-	•	Ala	•	•	•	•	-	-	•(1)	-

Input standardization examples

Cyclic

- YCFFWKTFC(C-C Cyclized)
- YC1KFWZTFTC1
- YC1KE2FWZTFK2SC1
- Stereochemistry
 - C1NFFd-WKTFTC1
- Chemical Modifications
 - [Nme]C1KFFWKTFTSC1
- Unnatural amino acids
 - [nal]C1[pal]WKVC1[nal]

Data Handling

- Some level of standardization required
 - Lack of systematic nomenclature
 - Specially for peptides
 - e.g. modifications shown in brackets
- Retain as much flexibility as possible
 - Use of synonyms for amino acids and modifications

User can fully edit the information and enter additional data as needed

Data Organization

- Align sequences as read-in
 - Clustal and other algorithms
 - Read in aligned sequences
 - User able to edit alignments
- Potential use of different substitution matrices
 - Currently BLOSUM62
 - Unnatural monomers present an issue

From Alignments to SAR

													CDR_L	2			CDR_L3												
	Identity	Homology	33	34	35	36	37	38	39	55	56	57	58	59	60	61	94	95	96	97	98	99	100	101	102	103	104		
			٧	Α	W	Υ	Q	Q	K	Υ	S	G	V	Р	S	R	Т	Р	Р	Т	F	G	Q	G	Т	K	V		
1	1.00	562.00	٧	Α	W	Υ	Q	Q	K	Υ	S	G	٧	Р	S	R	Т	Р	Р	Т	F	G	Q	G	Т	K	V		
2	1.00	562.00	V	Α	W	Υ	Q	Q	K	Υ	S	G	V	Р	S	R	T	Р	Р	T	F	G	Q	G	Т	K	V		
3	0.99	553.00	V	Α	W	Υ	Q	Q	K	Е	S	G	V	Р	S	R	Т	Р	Р	Т	F	G	Q	G	Т	K	V		
4	0.99	553.00	V	Α	W	Υ	Q	Q	K	Е	S	G	V	Р	S	R	Т	Р	Р	Т	F	G	Q	G	Т	K	V		
5	0.97	541.00	V	Α	W	Υ	Q	Q	K	Υ	S	G	V	Р	S	R	Т	Р	Р	Т	F	G	Q	G	Т	K	V		
6	0.97	541.00	٧	Α	W	Υ	Q	Q	K	Υ	S	G	V	Р	S	R	T	Р	Р	Т	F	G	Q	G	Т	K	V		
7	0.97	541.00	V	Α	W	Υ	Q	Q	K	Υ	S	G	V	Р	S	R	Т	Р	Р	Т	F	G	Q	G	Т	K	V		
8	0.97	541.00	٧	Α	W	Υ	Q	Q	K	Υ	S	G	V	Р	S	R	Т	Р	Р	Т	F	G	Q	G	Т	K	V		
9	0.97	541.00	٧	Α	W	Υ	Q	Q	K	Υ	S	G	V	Р	S	R	Т	Р	Р	Т	F	G	Q	G	Т	K	V		
10	0.97	541.00	٧	Α	W	Υ	Q	Q	K	Υ	S	G	V	Р	S	R	Т	Р	Р	Т	F	G	Q	G	Т	K	V		
11	0.95	526.00	٧	Α	W	Υ	Q	Q	K	Υ	S	G	V	Р	S	R	Т	Р	Р	Т	F	G	Q	G	Т	K	V		

Motifs based analysis

Antibody Engineering, CDRs

Antibodies from the Protein DB, CDRs shown colored by Hopps Wood scores

SAR for Biotherapeutics

- Tools that exploit unique nature are needed
- State of the art involves use of 3D structure
 - Need supplementary tools to analyze larger datasets
- Identify patterns in aligned sequences
- New tools are required
 - Invariant maps
 - Activity Cliffs

Invariant Maps

Activity trends as a position in the sequence is kept invariant

Mutation Cliffs

Sequence mutations that elicit a significant change in activity

Current Version

Current Version

Current Version

Summary

- SARvision | Biologics was developed to fill in a gap in research informatics
- Representation, Organization and Analysis need to be reexamined to serve a broad range of compounds
- Tools to supplement 3D analysis that will not always be possible with large datasets
- Tools for analysis, Invariant Maps and Mutation Cliffs aid in defining SAR

ALTORIS, INC.

7660-H Fay Ave #347 La Jolla, CA 92037

www.altoris.com www.chemapps.com